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criteria do not reliably predict underlying proteinopathies 
ante-mortem. In contrast, molecular etiologies of hereditary 
FTLD are consistently associated with specific proteinopa-
thies. These include MAPT mutations with FTLD-Tau and 
GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The 
last decade has seen a rapid expansion in our knowledge 
of the molecular pathologies associated with this clinically 
and neuropathologically heterogeneous group of FTLD dis-
eases. Moreover, in view of current limitations to reliably 
diagnose specific FTLD neuropathologies prior to autopsy, 
we summarize the current state of the science in FTLD 
biomarker research including neuroimaging, biofluid and 
genetic analyses. We propose that combining several of 
these biomarker modalities will improve diagnostic speci-
ficity in FTLD through a personalized medicine approach. 
The goals of these efforts are to enhance power for clini-
cal trials focused on slowing or preventing progression of 
spread of tau, TDP-43 and other FTLD-associated patholo-
gies and work toward the goal of defining clinical endophe-
notypes of FTD.

Keywords FTLD · TDP-43 · Tau · ALS · C9orf72 · 
GRN · MAPT

Introduction

Frontotemporal dementia (FTD) consists of a spectrum of 
clinical syndromes [6, 75, 135, 179, 201] associated with 
several underlying neurodegenerative diseases character-
ized by frontotemporal lobar degeneration (FTLD) [40, 
140]. FTD often affects individuals younger than 65 years 
old and is nearly as common as Alzheimer’s disease (AD) 
in this age range (i.e., prevalence of ~15–22/100,000 per-
son-years) [122, 180]. Men and women are both roughly 

Abstract Frontotemporal lobar degeneration (FTLD) 
comprises two main classes of neurodegenerative diseases 
characterized by neuronal/glial proteinaceous inclusions 
(i.e., proteinopathies) including tauopathies (i.e., FTLD-
Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while 
other very rare forms of FTLD are known such as FTLD 
with FUS pathology (FTLD-FUS). This review focuses 
mainly on FTLD-Tau and FLTD-TDP, which may present 
as several clinical syndromes: a behavioral/dysexecutive 
syndrome (behavioral variant frontotemporal dementia); 
language disorders (primary progressive aphasia variants); 
and motor disorders (amyotrophic lateral sclerosis, cortico-
basal syndrome, progressive supranuclear palsy syndrome). 
There is considerable heterogeneity in clinical presenta-
tions of underlying neuropathology and current clinical 
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equally affected in most population-based studies, and the 
disorder has a worldwide distribution [122, 175]. Many 
cases of FTD have a family history of a similar dement-
ing disorder with or without amyotrophic lateral sclerosis 
(ALS) [127, 218]. Non-genetic environmental risk factors 
have been studied in only small retrospective series, but 
these find a possible link between a history of head trauma 
and increased risk of FTD [114, 185].

FTLD neuropathology may present as one of three 
clinical FTD syndromes: a behavioral–dysexecutive dis-
order—behavioral variant FTD (bvFTD) [179]—the most 
frequent phenotype; three clinically distinct language dis-
orders including primary progressive aphasia (PPA) vari-
ants [75] (non-fluent/agrammatic variant, naPPA; semantic 
variant, svPPA and, rarely, a logopenic variant, lvPPA); in 
addition to motor disorders such as ALS [201], corticoba-
sal syndrome (CBS) [6], or progressive supranuclear palsy 
(PSP) syndrome [135]. There is considerable heterogeneity 
of clinical presentations and underlying pathology, as fur-
ther described below. In particular, bvFTD and CBS clini-
cal syndromes have a range of underlying neuropatholo-
gies, while naPPA is more commonly associated with 
tauopathies and svPPA with TDP-43 deposition, but these 
associations are not absolute. Motor presentations in FTD 
with ALS (FTD-ALS) and PSP are reliable indications of 
underlying TDP-43 and tauopathy, respectively [64]. There 
are few autopsy studies of the recently defined lvPPA vari-
ant and in vivo imaging studies suggest that this phenotype 
is largely due to an atypical presentation of AD neuropa-
thology [178]; however, forms of FTLD neuropathology 
have also been described with this syndrome [154]. Thus, 
clinical syndrome alone cannot reliably predict underly-
ing FTLD neuropathology ante-mortem. Indeed, clinical 
criteria for FTD syndromes are under continuous evalu-
ation and revision to help refine the diagnostic entities to 
better reflect underlying neuropathology and although 
broadly accepted, there is some controversy over the spe-
cific diagnostic features of FTD/PPA. Further work using 
well-annotated autopsy-confirmed samples and emerging 
biomarkers will hopefully lead to the concept of an endo-
phenotype (i.e., clinical syndrome that predicts underlying 
neuropathology).

There has been a rapid increase in the past decade of 
knowledge about genetic etiologies of FTLD and the 
molecular pathologies associated with this clinically and 
neuropathologically heterogeneous group of diseases. 
FTLD neuropathology is characterized by the pathologi-
cal aggregation of misfolded proteins, either in neurons or 
glial cells, or both. Further, increasing evidence from ani-
mal [48, 98] and cell models [84] of FTLD-Tau and to a 
lesser extent FTLD-TDP [174] and other neurodegenera-
tive conditions implicate neuron-to-neuron transmission of 
misfolded proteins as a central process for disease progress 

or spread and subsequent neurodegeneration (for review 
please see [83]). These findings mirror hierarchical stag-
ing models of human neurodegenerative disease [29, 33, 
35] and morphological studies of the spatial organization 
of inclusions [8]. However, AD, FTLD and other non-prion 
neurodegenerative diseases do not appear to be transmitted 
between humans and cattle like prions [100]. The central 
aspect of protein aggregation and spread throughout the 
CNS provides a promising target for therapeutic develop-
ment for these currently incurable disorders and accurate 
as well as rapid ante-mortem diagnosis is crucial for this 
effort.

To follow, we describe the pathological substrates of 
the FTLD pathologies underlying the different FTD vari-
ants and key clinical and genetic associations with a spe-
cial focus on current and future efforts to improve diag-
nostic accuracy for the development of disease-modifying 
therapies.

TDP‑43 proteinopathies (FTLD‑TDP and ALS)

Neuropathology

About 50 % of all FTLD is characterized by inclusion bod-
ies containing the transactive response (TAR) DNA-bind-
ing protein of 43 kDa (FTLD-TDP). TDP-43 was first iden-
tified in 2006 as the main constituent of ubiquitin-positive, 
tau-negative and α-synuclein-negative inclusions [5, 173], 
which was previously called FTLD with ubiquitin-positive 
inclusions or FTLD-U [40, 140]. TDP-43 is also the char-
acteristic inclusion found in >95 % of ALS patients includ-
ing nearly all sporadic cases of ALS [169, 173]. Further, 
there is considerable clinical overlap between ALS and 
FTD corresponding to the regional distribution of TDP-43 
neuropathology [71] and both share common genetic eti-
ologies [55, 169, 181]. Thus ALS and FTLD-TDP are best 
viewed as a clinicopathological continuum of TDP-43 pro-
teinopathies [71, 130].

TDP-43 is a nuclear protein implicated in exon skipping 
and transcription regulation [18, 38, 176]. As such, TDP-43 
is typically seen in most nuclei of normal cells. In disease, 
this protein becomes aberrantly localized to the cytoplasm 
where it forms cytoplasmic inclusions [173]. There are 
several potential mechanisms for neurodegeneration asso-
ciated with TDP-43 proteinopathies (reviewed in [130]) 
(Fig. 1) including RNA sequestration and dysfunction, loss 
of normal TDP-43 function through mislocalization and 
nuclear clearance and potential toxicity of pathological 
TDP-43 aggregates.

The neuropathology of FTLD-TDP and ALS is generally 
characterized by TDP-43-positive neuronal cytoplasmic 
inclusions (NCIs), neuronal intranuclear inclusions (NIIs), 
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dystrophic neurites (DNs), and glial cytoplasmic inclusions 
(GCIs) often in association with accumulations of ubiquitin 
and p62 [41]. Biochemistry of postmortem brain samples 
of these disorders shows TDP-43 to be abnormally phos-
phorylated, ubiquitinated and cleaved to generate C-termi-
nal fragments [5, 173]. Interestingly, C-terminal fragments 
appear to be more prominent in cortical TDP-43 deposits 
in comparison with lower motor neuron inclusions in the 
spinal cord that contain TDP-43 inclusions that are reac-
tive to both C-terminal and N-terminal domain-specific 
monoclonal antibodies (MAbs) [99, 125]. The abnormal 
phosphorylation of the C-terminal region of the protein 
(pTDP-43) has led to the development of disease-specific 
antibodies that readily detect pathological aggregates, but 
leave normal TDP-43 unstained [171]. Thus, pTDP-43 
immunohistochemistry (IHC) is the method of choice for 
detecting FTLD-TDP for routine diagnostic neuropatho-
logical evaluation [159]. Interestingly, one MAb gener-
ated against amino acid sequence in the RNA-recognition 
motif (RRM) has a similar immunohistochemical staining 
pattern to phospho-TDP epitopes, with predominance of 
reactivity for pathological inclusions and minimal normal 
nuclear TDP-43 reactivity, suggesting the possibility of 
phospho-independent pathological conformers of TDP-43 
[125]. Rare NCIs may be thioflavin-S positive in spinal 
cord indicating that they contain amyloid (i.e., beta-pleated 
sheets), but most TDP-43-immunoreactive inclusions are 

thioflavin-S negative and those in the hippocampus are 
never thioflavin-S positive [182]. In contrast, Bigio and co-
workers [21] found more widespread thioflavin-S-positive 
TDP-43 inclusions in neocortical regions and dentate gyrus 
of the hippocampus in FTLD-TDP. The reasons for these 
discrepancies are not clear, but they may depend on meth-
odological differences in fixation, tissue preparation and 
staining techniques. Indeed, Bigio et al. [21] used a modi-
fied thioflavin-S staining protocol in their study and also 
reported exuberant thioflavin-S-positive astrocytosis which 
does not result in amyloidosis.

The variability in the morphologic types of neuronal 
inclusions, their distribution, density, and immunohisto-
chemical profile has led to several proposed classifica-
tions based broadly on four pathologic subtypes which 
map more closely with genetic forms of FTLD-TDP but 
not as closely with clinical phenotypes [41, 139]. The 
harmonized “Type A” [139] is equivalent to type 3 of 
Sampathu et al. [188], and Cairns et al. [41] and is char-
acterized by numerous short DNs and crescentic or oval 
NCIs, concentrated primarily in neocortical layer two 
(Fig. 2g). Moderate numbers of lentiform or globose NIIs 
are an inconsistent feature of this subtype. Harmonized 
“Type B” matches Sampathu et al./Cairns et al. type 2, 
with moderate numbers of NCIs, throughout all cortical 
layers, but very few DNs (Fig. 2h). Harmonized “Type 
C” is the same as Sampathu et al./Cairns et al. type 1, 

Fig. 1  TDP-43-mediated neurodegeneration in FTLD-TDP/ALS. 
Pathological TDP-43 translocation from the nucleus (red) to the cyto-
plasmic compartment occurs in sporadic disease and hereditary cases 
with C9orf72, TARDBP, GRN, and VCP mutations. VCP mutation 
cases also have intranuclear TDP-43 inclusions (not shown). C9orf72 
mutation is associated with additional RNA foci in the nucleus 
(green) and cytoplasmic dipeptide repeat inclusions (blue), but the 

specific association with neurodegeneration is currently unclear. 
Neuron-to-neuron transmission is the likely mechanism for the non-
random pattern of spread of neurodegeneration. These processes are 
linked to RNA dysfunction and abnormal proteostasis, ultimately 
leading to neuronal cell loss and/or muscle denervation from lower 
motor neuron loss. Drug development efforts to slow or halt this pro-
cess may provide novel disease-modifying therapies in the future
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having a predominance of elongated DNs in upper corti-
cal layers, with very few NCIs (Fig. 2i). Finally, harmo-
nized Type D, Cairns et al. type 4, refers to the pathol-
ogy associated with FTLD-TDP with VCP mutation (see 
below) and is characterized by numerous short DNs and 
frequent lentiform NIIs (Fig. 2j). TDP-43 positive skin 
(Fig. 2k) or “Lewy-like inclusions” in remaining lower 
motor neurons along with motor cortex TDP-43 inclu-
sions and corticospinal tract degeneration characterize 
ALS pathologically. Notably, efforts to stage the spread 
or progression of TDP-43 pathology in FTLD-TDP and 
ALS-TDP have been reported using 70-µm-thick tis-
sue sections which reveals far more TDP-43 pathology 
than traditional thin (6–10 µm) sections, but this renders 
subtyping more difficult due to the greater abundance of 
pathology that is visualized [33, 34]. These efforts have 
identified a non-random hierarchical pattern of TDP-43 
neuropathology in ALS and FTLD-TDP and suggest that 
neuron-to-neuron spread of pathological TDP-43 aggre-
gation may be central to disease pathogenesis (reviewed 
by [30]). Due to current technical limitations of TDP-
43 biochemistry and lack of a murine model that reca-
pitulates all features of ALS/FTLD-TDP, cell and animal 

model data for transmission are currently limited but this 
is an area of intense research [174].

TDP-43 pathology is not specific to FTLD-ALS as it is 
also found commonly in over 50 % of AD cases and related 
tauopathies, hippocampal sclerosis, pathological aging and 
other neurodegenerative diseases [4, 67, 68, 72, 167, 205, 
217]. Indeed, hippocampal sclerosis of aging and TDP-43 
proteinopathy appear to be closely linked [168]. Careful 
clinicopathological correlation studies find that comorbid 
TDP-43 pathology in aging and AD may have an independ-
ent impact on cognition and neurodegeneration [111, 217]. 
Further, staging efforts have been made for TDP-43 in AD 
and they suggest a spatiotemporal progression starting in 
the amygdala [110] that differs from staging schemes pro-
posed for bvFTD due to FTLD-TDP [33]. These findings 
suggest that TDP-43 aggregation may result from several 
potential mechanisms with an independent impact on cog-
nitive function; indeed, the genetic heterogeneity of famil-
ial FTLD-TDP also implies multiple potential upstream 
paths (i.e., GRN, TARDBP, C9orf72, VCP, etc.) for TDP-
43-mediated neurodegeneration that is central to FTLD-
TDP/ALS. Future studies will help clarify the overlap of 
TDP-43 with other neuropathologies that characterize 

Fig. 2  Neuropathological subtypes of FTLD. Photomicrographs of 
FTLD-Tau (a–f) and FTLD-TDP (g–k). Images illustrate character-
istic inclusion bodies including neocortical (a) round tau-positive 
Pick bodies (arrows) in PiD (b) tufted astrocytes (arrows) in PSP, c 
astrocytic plaques (asterisk) in CBD, d tau-positive neuronal inclu-
sions (arrows) and threads (asterisk) in FTLD-Tau with a MAPT 
mutation (p.P301L), e tau-positive grains (arrows) in limbic cortex in 
AGD, f extracellular ghost tangles (asterisks) in the cornu ammonis 
in tangle predominant dementia or primary age-related tauopathy 

(PART). Neocortical sections illustrate in g–j FTLD-TDP morpho-
logical subtype A (g) with superficial layer short dystrophic neurites 
(arrows) and neuronal cytoplasmic inclusions (asterisks) containing 
pathological TDP-43, h subtype B with mainly cytoplasmic inclu-
sions (asterisks), i subtype C with long dystrophic neurites (arrows), 
j and subtype D with superficial layer lentiform intranuclear inclu-
sions (asterisks) and short dystrophic neurites (arrows) while k shows 
skin-like inclusions (arrows) in anterior horn cell in ALS. Scale bar 
100 µm
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different neurodegenerative disorders, and perhaps future 
TDP-43-directed therapies may be of utility in AD cases 
with dual pathology. Thus, TDP-43-specific biomarkers are 
of critical importance.

Genetics

FTLD-TDP is extraordinarily diverse from a genetic stand-
point (Fig. 3). Four main molecular etiologies of autosomal 
dominantly inherited pathogenic mutations have been iden-
tified for TDP-43 proteinopathies: variably but abnormally 
long expansions of a hexanucleotide (GGGGCC) repeat in 
the chromosome 9 open reading frame 72 gene (C9orf72) 
[55, 143, 181] are the most frequent genetic cause of famil-
ial FTD, FTD-ALS and ALS; mutations in the progranu-
lin gene (GRN) [13, 53, 163] are the second most frequent 
genetic cause of familial FTLD-TDP while mutations in 
valosin-containing protein gene (VCP) [214, 215] and TAR 
DNA-binding protein gene (TARDBP) [73, 113, 207] are 
less common causes of familial FTLD-TDP and/or ALS. 
Although each genetic cause is characterized neuropatho-
logically by the presence of TDP-43-immunoreactive 

inclusions, the morphology, IHC, distribution of the inclu-
sion bodies, and clinical phenotype vary between the dif-
ferent genotypes.

Sporadic disease and genetic risk factors

One genome-wide association study (GWAS) was per-
formed using only FTLD-TDP patients with either a patho-
logically confirmed TDP-43 pathology or a GRN mutation 
and genome-wide significance was detected for a single 
gene, transmembrane protein 106B (TMEM106B) on chro-
mosome 7 [208]. Although this risk factor has not been 
replicated in all follow-up studies using clinically derived 
cohorts, perhaps due to the underlying pathologic hetero-
geneity among clinically defined cohorts, the most signifi-
cant TMEM106b association was in FTLD-TDP patients 
carrying GRN mutations [52, 62, 184, 208, 209]. An inter-
national GWAS including all subtypes of clinical FTLD 
was recently completed and found two novel single-nucle-
otide polymorphisms (SNPs) associated with disease pos-
sibly related to immune function and lysosomal pathways 
and autophagy [59]. Finally, C9orf72 expansion is seen in 

Fig. 3  Genetic associations in FTLD/ALS. Relative frequencies of 
neuropathological subtypes and associated molecular etiologies of 
FTLD and ALS are depicted. FTLD-Tau represents roughly 45 % 
of all FTLD and mutations in MAPT are the sole known cause of 
hereditary forms of this disorder. FTLD-TDP accounts for roughly 
50 % of all FTLD and hereditary forms are associated with patho-
genic mutations in GRN, C9orf72, TARDBP and VCP and other rare 
genes. ALS is associated with TDP-43 neuropathology in >95 % of 
cases and there is considerable clinicopathological and genetic over-

lap of FTLD-TDP and ALS as demonstrated by the overlapping Venn 
diagrams. Placement of gene names reflects these associations, with 
FTLD-ALS/ALS cases more associated with C9orf72 and TARDBP 
while less commonly linked to VCP and rarely GRN. TARDBP is 
rarely associated with FTLD without comorbid ALS. A minority 
of ALS is associated with pathogenic mutations in SOD1 and FUS, 
while FTLD-FUS also may occur in a sporadic condition. Extremely 
rare cases of FTLD (other) are associated with pathogenic mutations 
in CHMP2B and FTLD-U neuropathology
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a small subset of sporadic ALS (~5–10 %) and less com-
monly FTD (~5 %) [143]. Thus, the contribution of genetic 
modifiers to phenotypic variation in genetic and sporadic 
FTLD-TDP is evolving and these discrepancies highlight 
the importance of autopsy confirmation for genetic and bio-
marker discovery studies in FTLD.

Progranulin (GRN)

Mutations in GRN located on chromosome 17q21 are the 
molecular genetic basis of about one quarter of all familial 
cases of FTLD-TDP [13, 15, 53, 163]. Pathogenic muta-
tions in GRN are mainly nonsense and splice site muta-
tions resulting in the loss of one GRN allele (i.e., null muta-
tions); some mutations, however, are missense mutations 
causing mis-trafficking within the cell and a functional 
haploinsufficiency; both mechanisms result in progranulin 
protein haploinsufficiency. More than 70 different patho-
genic mutations in GRN have been reported. Further, recent 
studies show that microRNA-132 and microRNA-212 
repress TMEM106B expression through shared micro-
RNA-132/212 binding sites in the TMEM106B 3′UTR and 
that endogenous neuronal TMEM106B proteins colocal-
ize with progranulin proteins in late endolysosomes, while 
TMEM106B overexpression increases intracellular levels 
of progranulin. Thus, TMEM106B is an FTLD-TDP risk 
gene that alters progranulin pathways [44]. GRN mutation 
cases are exclusively associated with TDP-43 “subtype 
A” [139]. Interestingly, progranulin protein is not found in 
TDP-43 inclusions [140], but GRN mRNA expression from 
the normal allele is increased in cortical areas of neurode-
generation in GRN mutation carriers and this may be medi-
ated by reactive proliferation of microglia in affected brain 
regions [45]. Low serum progranulin levels are found in 
the serum/plasma of GRN mutation carriers [61, 196] and 
thus provide a promising biomarker for potential emerging 
progranulin-restorative therapies [26].

C9orf72 hexanucleotide expansion

The expansion of a hexanucleotide (GGGGCC) repeat 
in a non-coding region of the C9orf72 gene was recently 
discovered [55, 181] and is the most common molecular 
etiology of hereditary and sporadic ALS and/or FTLD-
TDP. C9orf72 encodes a protein of unknown function. 
Pathologic expansion repeats extend from approximately 
30 to more than 1,000, and there appears to be no direct 
association between the severity of disease and expansion 
size above the normal range. These analyses may be con-
founded by differences in C9orf72 expansion in peripheral 
blood and various regions of CNS, as some correlations 
of repeat length with demographic features in FTD have 
been described for some specific brain regions [206]. The 

C9orf72 expansion is more common in patients with famil-
ial ALS and FTD-ALS than familial FTLD. Notably, how-
ever, TMEM106B, the risk gene for FTLD-TDP, has also 
been identified as a genetic modifier of FTD with C9orf72 
expansions with the minor allele protective of developing 
FTD, but not MND [206]. Interestingly, the genotype that 
confers increased risk for developing FTLD-TDP has been 
associated with later age at onset and death in C9orf72 
expansion carriers with FTD [69].

Neuropathologically, the majority of C9orf72 mutation 
cases have TDP subtype B [22, 141, 199] but unlike other 
TDP-43 proteinopathies, cases with the hexanucleotide 
expansion also have additional proteinaceous inclusions of 
unclear clinical significance that are not reactive for TDP-
43 (Fig. 1). C9orf72 cases have small p62-positive NCIs 
and rare NIIs in cerebellar granular neurons and p62-immu-
noreactive star-shaped NCIs and occasional punctate NIIs 
in the hippocampus [2]. C9orf72 cases also have additional 
ubiquillin-positive pathology in cerebellum and hippocam-
pus, and the presence of these at autopsy predicts the occur-
rence of pathological hexanucleotide C9orf72 expansions 
[36, 103]. There are also foci of RNA aggregations in neu-
ronal nuclei in these regions [55, 158]. Finally, the hexa-
nucleotide repeat region is bi-directionally translated by an 
unconventional repeat-associated non-ATG translation of 
the expanded C9orf72 transcript to form aggregating dipep-
tide repeat (DPR) proteins (poly-(Gly-Ala), poly-(Gly-
Pro) and poly-(Gly-Arg), poly-(Pro-Ala) and poly-(Pro-
Arg)) which also are predictive of C9orf72 expansion [10, 
70, 161]. Indeed, DPR proteins are highly co-localized in 
p62-positive, TDP-43-negative, inclusions in FTLD-ALS 
spectrum cases with C9orf72 repeat expansion [144, 161] 
and share a similar morphology and regional distribution; 
although DPR proteins are more widespread [10]. Double-
labeling immunofluorescence studies of ubiquillin and 
DPR are lacking but the regional distribution and minimal 
co-localization with TDP-43 suggest a similar relationship 
to DPR as p62. Interestingly, there does not appear to be 
a correlation between DPR pathology and neurodegen-
eration [138]; however, recent cell and Drosophila model 
experiments suggest a potential toxicity of DPR protein 
accumulation distinct from RNA foci-associated gene dys-
regulation [124, 157, 220]. Indeed, substantial DPR pathol-
ogy has been reported in early/pre-symptomatic C9orf72 
autopsy cases with an absence or minimal TDP-43 neuro-
pathology [11, 177]. Further, DPR proteins are detectable 
in the cerebrospinal fluid of C9orf72 mutation carriers and 
could serve as a useful biomarker for C9orf72 associated 
TDP-43 proteinopathies [202]. Finally, transcriptional 
silencing of mutant C9orf72 due to promoter hypermeth-
ylation is associated with lower RNA foci and DPR aggre-
gate burden in human brains, and later age of death in FTD 
suggesting that expression of the mutant gene is indeed 
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deleterious [136, 186]. Further work is needed to clarify 
the link between C9Orf72 expansion, p62, ubiquillin, DPR 
aggregation, RNA foci and TDP-43 aggregation with neu-
rodegeneration; however, presently it is TDP-43 accumula-
tion that is most closely linked with neurodegeneration in 
ALS/FTLD-TDP [36, 138].

Tardbp

The discovery of mutations in TARDBP on chromosome 1 
indicated that abnormal TDP-43 is sufficient to cause neu-
rodegeneration [207], thereby confirming the initial discov-
ery of the linkage of TDP-43 pathology to FTLD and ALS 
[173]. However, mutations in TARDBP account for only a 
small number, <4 %, of FALS cases, and are rare causes 
of FTD. In limited autopsy studies, TDP-43 proteinopathy 
seen in TARDBP mutation cases is similar to that seen in 
sporadic ALS/FTLD-TDP; however, there may be more 
extensive proteinopathy outside motor areas than in spo-
radic cases [42].

VCP

VCP is located on chromosome 9p13.3-p12 and several 
pathogenic missense mutations have been linked to a rare 

phenotype of hereditary inclusion body myopathy (IBM) 
associated with Paget disease of bone (PDB) and early 
onset frontotemporal dementia (IBMPFD) [214, 215]. 
More recently, mutations in VCP have also been reported 
in patients with an ALS without dementia phenotype 
[108]. Human VCP (also called p97, ter94, or CDC48) is a 
644 amino acid protein encoded by a gene with 17 exons. 
It is a member of the AAA-ATPase superfamily involved 
in multiple functions including: vesicle transport and 
fusion, 26S proteasome function, and assembly of peroxi-
somes [54, 155]. The neuropathology in FTLD-TDP with 
a VCP mutation is a unique subtype of FTLD-TDP, sub-
type D [139], characterized by numerous NIIs (Fig. 2j). 
Identification of pTDP-43, but not VCP, within ubiquitin-
positive inclusions supports the hypothesis that VCP muta-
tions lead to a dominant-negative loss or alteration of VCP 
function culminating in impaired degradation of TDP-43.

Finally, it is noteworthy that in addition to the muta-
tions noted above that cause ALS/FTLD-TDP, multiple 
pathogenic mutations in four other genes (including those 
encoding ataxin-2, optineurin, NIPA1 and angiogenin) for 
ALS and/or FTLD-TDP have been discovered that also are 
linked to TDP-43 pathology thereby suggesting that ALS 
and FTLD share similar disease mechanisms all of which 
involve TDP-43 pathology [86, 115, 119, 145].

Fig. 4  Clinicopathological and genetic associations in FTLD/ALS. 
The scheme portrays relative frequencies of neuropathological sub-
types of FTLD and pathogenic mutations associated with FTD clini-
cal phenotypes arranged with predominant cognitive syndromes 
above and predominant motor disorders below (CBS is intermediate 
with largely mixed cognitive/motor features). Common associations 
between syndromes (i.e., ALS-bvFTD, PSP-naPPA) are identified 
with solid lines and dashed line represents less common comorbid 
syndromes (i.e., ALS-naPPA, PSP-bvFTD, CBS-bvFTD). FTLD-Tau 
pathology (red) is found in virtually all PSP cases and the major-
ity of naPPA. FTLD-Tau is also found in a significant proportion 

of CBS and bvFTD and rare in svPPA. TDP-43 pathology (blue) is 
found in almost all ALSs and the majority of svPPA, while roughly 
half of bvFTD cases harbor FTLD-TDP at autopsy while FTLD-TDP 
pathology is less commonly found in naPPA and CBS. Atypical pres-
entations of AD are seen in a significant proportion of CBS and less 
commonly in svPPA and naPPA, but very rarely in bvFTD. Finally, 
a small percentage of ALS has FUS or SOD-1 (green) pathology at 
autopsy and FUS is a rare substrate for bvFTD. Genetic etiologies 
linked to clinical phenotypes are written below in order of frequency; 
svPPA is largely a sporadic condition
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Clinicopathological correlations

FTLD-TDP can present clinically as bvFTD, FTD-ALS, 
CBS or PPA [64] (Fig. 4). Of note, the majority of svPPA 
cases are associated with FTLD-TDP [78], in particular 
“subtype C” [139, 183]; while roughly half of bvFTD [64, 
88, 183] and ~15 % of CBS have TDP-43 neuropathol-
ogy [133]. FTLD-TDP can also less commonly present 
with slow hesitant speech, consistent with lvPPA [154] and 
motor speech difficulties consistent with naPPA [78, 120, 
197]. A small percentage of patients with FTLD-TDP neu-
ropathology may present clinically with an amnestic dis-
order similar to AD, especially those with an older onset 
and comorbid hippocampal sclerosis at autopsy [168]. 
The development of clinical motor neuron disease in FTD 
patients is highly associated with underlying TDP-43 neu-
ropathology and is a poor prognostic marker [96].

Hereditary forms of FTLD-TDP have specific associa-
tions with clinical phenotypes of FTD. The most frequent 
clinical presentation of FTLD-TDP with GRN mutation is 
bvFTD [128]; although there is considerable heterogeneity 
between patients within and between families, including 
language dysfunction, consistent with PPA variants while 
extrapyramidal symptoms (parkinsonism and CBS) are less 
frequent and ALS is extremely rare [43]. Mutant GRN has 
been associated with lvPPA as well [154]. C9orf72 expan-
sion may present with ALS and/or several clinical FTD 
syndromes, most commonly bvFTD but also PPA [22, 103, 
141]; interestingly, neuropsychiatric features uncommon 
to bvFTD have been described [199]. In addition, clinical 
cases of AD with FTLD-TDP with varying degrees of AD 
neuropathologic change or unknown neuropathology have 
been associated with C9orf72 expansions [14, 85, 142]. 
Other reported C9orf72 clinical phenotypes include neu-
ropsychiatric disease [20], Huntington’s disease-like pres-
entation [87] and multiple system atrophy [74]. C9orf72 
expansion carriers with clinical ALS have a shorter dis-
ease duration than sporadic cases [39, 103] and C9orf72 
expansion carriers with FTD may have a more rapid cog-
nitive decline associated with more severe cortical atrophy 
compared with other forms of FTLD-TDP [103]; however, 
cases of slowly progressive C9orf72 mutation-positive 
FTD with minimal cortical atrophy have also been reported 
[117]. Indeed, several studies find additional areas of corti-
cal atrophy in C9orf72 FTD in the thalamus, parietal lobes 
and cerebellum on neuroimaging [103, 141, 191], while 
some cases may have minimal atrophy and non-progressive 
clinical symptoms [22, 117]. Further, C9orf72 ALS-FTD 
may have a longer disease duration than ALS-FTD without 
a mutation [191], although a wide range of age at onset, 
death and disease duration has been reported [22, 93, 141, 
194]. Thus, significant heterogeneity exists for C9orf72-
associated cases with potential multiple genetic or other 

modifying factors. Although the TARDBP mutations are 
most frequently associated with ALS and ALS-FTD clini-
cal phenotypes, additional features of chorea and PSP-
like presentations may be seen in patients with TARDBP 
mutations. Indeed, patients with “ALS-plus” symptoms 
(i.e., extrapyramidal, autonomic, oculomotor or cerebellar 
dysfunction) are more likely to harbor a pathogenic muta-
tion in TARDBP, C9orf72 or VCP compared with sporadic 
cases [148].

Tauopathies (FTLD‑Tau)

Neuropathology

Roughly 45 % of FTLD is caused by a diverse class of neu-
rodegenerative diseases characterized by neuronal and glial 
inclusions composed of the microtubule-binding protein, 
tau (FTLD-Tau) (Fig. 3). The discovery of multiple path-
ogenic mutations in MAPT associated with diverse FTD 
syndromes, formerly known as FTDP-17 and now called 
FTLD-Tau with MAPT mutation (see below), has led to the 
unequivocal evidence that tau abnormalities alone are suf-
ficient to cause neurodegenerative disease (similar to pre-
viously described TARDBP mutations in ALS/FTLD-TDP) 
(Fig. 5).

As reviewed recently [134, 219], tau proteins are low-
molecular-weight MAPs that are abundant in the central 
nervous system (CNS), where they are expressed pre-
dominantly in axons, and at very low or negligible levels 
in astrocytes and oligodendrocytes. Human tau proteins are 
encoded on a single gene located on chromosome 17q21 
with 16 exons leading to the generation of 6 different 
CNS tau isoforms generated by alternative splicing of 11 
of these exons in the messenger RNA (mRNA) transcript. 
In the adult human brain, alternative splicing of exons 2, 
3, and 10 generates 6 tau isoforms ranging from 352 to 
441 amino acids in length, which differ by the presence of 
either 3 or 4 microtubule (MT)-binding repeats (3R tau or 
4R tau, respectively) consisting of repeat sequences of 31 
or 32 amino acids each that are encoded by exons 9–12. In 
addition, alternative splicing of exons 2 and 3 leads to the 
absence (0N) or presence of inserted sequences of 29 (1N) 
or 58 (2N) amino acids in the amino-terminal third of the 
molecule thereby resulting in 4R0N, 4R1N, 4R2N, 3R0N, 
3R1N and 3R2N tau proteins at a 1:1 ratio of 3R to 4R tau 
in the adult CNS.

Tau functions by binding to and stabilizing MT and 
this process is regulated by phosphorylation. Several 
protein kinases and protein phosphatases have been 
implicated in regulating the phosphorylation state and 
thus the function of tau. The phosphorylation sites are 
clustered in regions flanking the MT-binding repeats, 
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and increasing tau phosphorylation at multiple sites reg-
ulates MT binding [32]. More recently, tau has also been 
shown to be modified by acetylation [49, 156]. However, 
in both sporadic and familial tauopathies, tau is hyper-
phosphorylated and acetylated and it is this “abnormal” 
tau that is the principle component of the filamentous 
aggregates in neurons and glia that are the pathological 
hallmarks of these disorders. Similar to phosphoryla-
tion, acetylation of tau at the lysine 280 residue (i.e., 
acK280) in the second MT-binding motif of 4R tau also 
disrupts the MT-binding function of tau, but in addition 
also promotes tau aggregation in vitro [49]. Other lysine 
residues in the MT-binding motif may inhibit tau polym-
erization and phosphorylation at these residues [50] 
and may inhibit degradation of abnormal tau [156]. The 
acK280 modification is disease specific for pathological 
tau in tauopathies and is not present in normal control 
CNS tissue [49, 101, 102]. Comparison with multiple 
tau epitopes across various stages of AD neuropathol-
ogy suggests a close association of acK280 modification 
with the amyloid properties (i.e., Thioflavin-S reactive) 
of AD tangles and also in Thioflavin-S-negative inclu-
sions in FTLD-Tau [101, 102]. Thus, a potential inter-
play between phosphorylation and acetylation modi-
fications in tau may perturb normal tau function and 
promote pathological aggregation in various tauopathies. 
Finally, in the disease state, tau also may be nitrated 
[91] and glycated [129] which may contribute to disease 
pathogenesis.

FTLD-Tau can be subdivided into several neuropatho-
logical diagnoses and classified based on the predominant 
tau isoforms that are present in the inclusion bodies (i.e., 
3R, 4R or equal 3R:4R ratio).

3R tauopathy: Pick’s disease

The sole 3R predominant tauopathy is Pick’s disease (PiD), 
which historically referred to clinical FTD in general but 
now this term is reserved for the neuropathological diagno-
sis described here due to the neuropathological heterogene-
ity of FTD (Fig. 4). On gross examination, there is often 
severe “knife-edge” atrophy of the frontotemporal neocor-
tex. The diagnostic histological feature of PiD is the Pick 
body [164] (Fig. 2a). Pick bodies are well-circumscribed, 
spherical, argyrophilic, and tau-immunoreactive neuronal 
intracytoplasmic inclusions. In addition, there are swollen 
achromatic so-called “ballooned” neurons or Pick cells, 
neuronal loss, and astrocytosis. Pick bodies are found most 
abundantly in the granule cells of the dentate gyrus. Pick 
bodies are found at lower densities in the pyramidal neu-
rons of the frontal and temporal neocortex. The distribution 
of Pick bodies may be uni- or bilaminar, and this difference 
may reflect the stage of progression of the disease [9]. A 
prominent band may be seen in layer II and upper layer III, 
and a band in layer IV. These neurons can be contrasted 
with those in AD, in which NFTs are found predominantly 
in the large pyramidal neurons of layers III and V, the major 
cortico-cortical projecting neurons. Spatial pattern analy-
sis has shown that Pick bodies appear in regular clusters 
throughout affected cortical areas [7]. Pick bodies are best 
identified using tau-directed immunohistochemistry. They 
have a similar staining pattern to NFTs, but the immunohis-
tochemical and biochemical profile of tau in Pick disease is 
different from that in AD: in Pick disease, IHC shows that 
3R tau isoforms predominate in Pick bodies [16, 56] and 
biochemical Western blot studies support these IHC find-
ings [222]. A subset of inclusions are thioflavin-S positive 

Fig. 5  Tau-mediated neurodegeneration in FTLD-Tau. Tau misfold-
ing and aggregation into to beta-pleated sheet containing oligomers 
and fibrils occur in familial FTLD-Tau due to MAPT mutations and 
in FTLD-Tau. This process results in loss of microtubule-binding 

function and formation of cytosolic tau inclusions (red). Animal- and 
cell-model data suggest neuron-to-neuron transmission is central to 
disease pathogenesis and propagation. This process leads to multiple 
areas of cell dysfunction (boxes)
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and among these, are the ones that that contain 4R-tau 
immunoreactivity by IHC with acetylation-specific anti-
bodies directed at K280 [101]. Ultrastructurally, Pick bod-
ies contain 15-nm-diameter filaments and do not appear to 
have a limiting membrane [164]. Ballooned neurons can be 
labeled with antibodies specific for the heat shock protein, 
β-crystallin. The significance of ballooned neurons in the 
pathogenesis of PiD is unclear and they are not present in 
all cases. Finally, PiD also contains numerous tau-positive 
glial inclusions in gray and white matter.

4R tauopathies: corticobasal degeneration

Similar to PiD, current nomenclature of FTLD-Tau 
reserves the term corticobasal degeneration (CBD) for 
the neuropathological diagnosis of the 4R tauopathy 
[57] described below. Corticobasal syndrome (i.e. CBS) 
refers to the clinical diagnosis of patients who present 
with an asymmetric Parkinsonian disorder [6], which was 
originally linked to CBD neuropathology. This clinical 
syndrome is now known to encompass several potential 
underlying neuropathologies outside of CBD [133], which 
has necessitated the change in nomenclature (see below). 
On gross examination, the brain is atrophied asymmetri-
cally in the posterior frontal and parietal lobes; both the 
pre- and postcentral gyri may be affected. There is also 
pallor of the substantia nigra in the majority of cases. 
Microscopically, neuron loss may be more severe in the 
outer cortical laminae and generate status spongiosus. The 
white matter underlying the affected areas of cortex may 
be rarefied and display a reactive astrocytosis. Ballooned 
neurons are often readily seen throughout the neocortex. 
There is usually severe neuronal loss and accompanying 
astrocytosis in the substantia nigra. A characteristic fea-
ture is the intraneuronal basophilic inclusion. These “cor-
ticobasal inclusions” are argyrophilic and fibrillar, and are 
labeled by anti-ubiquitin and anti-tau antibodies. Histo-
logically, they resemble the NFTs of PSP. Ultrastructur-
ally, the filaments in these CBD inclusions are mainly 
straight, with a diameter of 15 nm [213]. In addition to 
these corticobasal inclusions, small neuronal tau-positive 
inclusions and neuropil threads can be found in the super-
ficial layers of the cortex.

The most prominent microscopic features of this dis-
order are clusters of astrocytic tau-positive processes that 
coalesce to form astrocytic plaques (Fig. 2c). There are 
also tau-positive inclusions in oligodendrocytes, referred 
to as “coiled bodies.” Both the astrocytic and oligoden-
droglial inclusions in CBD are labeled by anti-ubiquitin 
and anti-tau antibodies. The tau protein in CBD is pre-
dominantly 4R tau, and these findings are supported by 
biochemical Western blot studies [65, 224]. Moreover, 
CBD inclusions are robustly reactive for the acK280 

acetylation modification of tau [102]. Interestingly, CBD 
inclusions do not react with amyloid-binding dyes and 
lack several tau epitopes linked to more “mature” and 
extracellular ghost tangles in AD such as C-terminal trun-
cation epitopes [17, 82]. These morphological and bio-
chemical differences in tangle formation between CBD 
and PSP (see below) as well as with AD are currently 
unclear, but provide a possible avenue for future efforts 
in biomarker discovery to differentiate these tauopathies 
ante-mortem.

4R tauopathies: progressive supranuclear palsy

PSP pathologically is also a 4R predominant tauopathy 
with significant white matter pathology predominantly 
in the brainstem and subcortical structures [221, 224]. 
Macroscopically, the substantia nigra and locus coer-
uleus often appear pale and cortical atrophy is variable. 
Histology reveals tangles, neuropil threads, glial inclu-
sions, neuronal loss, and astrocytosis [57]. The predomi-
nant hallmarks of PSP are the 4R tau-positive tangles and 
tufted astrocytes (Fig. 2b). The NFTs are found in the 
substantia nigra, globus pallidus, subthalamic nucleus, 
nucleus basalis of Meynert, pretectal area, tegmentum of 
the midbrain and pons, locus coeruleus, raphé nuclei, and 
the nuclei of various cranial nerves as well as the cerebel-
lar dentate nucleus. The tangles are readily seen by sil-
ver impregnation methods but are best visualized by tau 
IHC. Electron microscopy demonstrates that the tangles 
contain straight filaments of 12–15 nm, which in turn are 
composed of six or more protofilaments of 2–5 nm [160]. 
Paired helical filaments (PHFs) similar to those seen in 
AD, and intermediate forms have been described. Many 
astrocytes have inclusions called tufted astrocytes, and 
the cell bodies containing these inclusions may be tuft 
shaped or less frequently thorn shaped. Oligodendrocytes 
may also contain tau-positive “coiled-body” inclusions. 
PSP inclusions are largely negative for thioflavin-S and 
robustly positive for the acK280 acetylation modifica-
tion in tau [102]. Similar to CBD, PSP cases lack several 
“late” C-terminal truncation tau epitopes seen in AD neu-
ropathology [17, 81].

Recently, globular glial tauopathies (GGTs) have been 
described in 22 cases as a new neuropathological entity [1]. 
GGT is a 4R tauopathy with astrocytic and oligodendritic 
tau inclusions similar to PSP but they differ by the lack 
Gallyas reactivity. Further there is often minimal subcorti-
cal neuronal loss in the dentate and subthalamic nuclei and 
very extensive white matter pathology. Three GGT types 
have been delineated corresponding to involvement in fron-
totemporal (Type I), motor/corticospinal tract (Type II) or 
both (Type III) corresponding to a range of clinical syn-
dromes including ALS, FTD and PSP [1].
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4R tauopathies: argyrophilic grain disease (AGD)

The term ‘argyrophilic grain’ derives from its appearance 
using some (e.g., Gallyas), but not all, silver impregnation 
methods; however, they are best visualized using 4R iso-
form-specific anti-tau antibodies. Grains are small (4–8 µm 
diameter), round or spindle-shaped structures found mainly 
in the cortical neuropil (Fig. 2e) and to a lesser degree in 
the underlying white matter. Grains are found mainly in 
dendrites and dendritic branches and some axons. Other 
non-specific lesions include: pre-tangle neurons, coiled 
bodies, tau-immunoreactive astrocytes, swollen achro-
matic, or ‘ballooned,’ neurons, NFTs, and neuropil threads. 
The tau immunoreactivity in astrocytes is more diffuse than 
the compact fibrillar, tau-immunoreactive inclusions of 
tufted astrocytes of PSP. Ultrastructurally, grains contain 
straight filaments of 10–20 nm diameter and tubular struc-
tures of 25 nm diameter. Although AGD may be found in 
the absence of other diseases, as a 4R tauopathy [223, 224], 
it most frequently occurs with more common neurodegen-
erative disorders including AD, the 4-repeat (4R) tauopa-
thies, PSP and CBD, and other molecular pathologies 
including dementia with Lewy bodies, Parkinson disease 
dementia, and Parkinson disease. AGD may also be found 
as a comorbidity in older patients with hippocampal scle-
rosis. Various staging schemes have been proposed based 
on the density and distribution of lesions in the medial 
temporal lobe, adjacent structures, neocortex and subcorti-
cal nuclei [60, 187]. Grains in AGD show reactivity with 
acK280 acetylation modification of tau [101], but may lack 
other potential acetylation epitopes [76].

3R/4R tauopathies: primary age-related tauopathy (PART)

PART is a 3R/4R tauopathy that may readily be distin-
guished from AD by the presence of NFT in medial tem-
poral lobe structures and the complete or nearly complete 
absence of Aβ plaques. This distinction is now recognized 
in the recent National Institute on Aging-Alzheimer’s Asso-
ciation (NIA-AA) diagnostic criteria for AD [159] and 
thus, since the neuropathology can occur with minimal 
cognitive symptoms the term “tangle predominant senile 
dementia” has been replaced with PART [51]. The most 
characteristic finding is the presence of neuronal loss, glio-
sis, and frequent NFT, including extracellular NFT, called 
ghost tangles, in the hippocampus, parahippocampal gyrus, 
and entorhinal cortex (Fig. 2f). This is a common finding in 
patients of advanced age [51]. In more advanced disease, 
NFT may be seen in the nucleus basalis of Meynert, the 
amygdala, periaqueductal gray matter, locus coeruleus, and 
other regions; but NFTs are rare in the isocortex of PART. 
Biochemical studies indicate that fractions enriched for 
insoluble tau reveal no difference in the tau isoform ratio 

(3R:4R) in PART as is the case in AD [189] and tangles are 
similarly detected using phosphorylation-dependent tau-
specific MAbs. Fine structural analysis of the NFT reveals 
mainly PHFs similar to those seen in AD. In addition, 
acK280 reactivity in PART is also similar to acetylation of 
tau in AD [101]. Tangle predominant senile dementia was 
previously categorized as FTLD-Tau [140] and there is 
considerable pathological overlap between PART, includ-
ing lack of an association with APOE 4 genotype, sug-
gesting a pathway of disease independent from AD [51]; 
however, these biochemical and topographic distribution 
similarities to AD, together with varying rates of progres-
sion of Aβ plaque and tau neurofibrillary pathology have 
suggested by some that PART is not a separate process 
from AD [31]. These discrepancies are a matter of ongoing 
study and debate.

Genetics

Risk factors in sporadic FTLD-Tau disease

Two extended haplotypes (H1, H2) cover the human MAPT 
gene, and there is complete disequilibrium between poly-
morphisms that span the gene (which covers approximately 
100 kb of DNA). This suggests that the establishment of 
the two haplotypes was an ancient event, and that either 
recombination is suppressed in this region, or recombinant 
genes are selected against. The more common haplotype 
(H1) is significantly overrepresented in patients with PSP 
[12] and CBD [92], but there is no difference between the 
MAPT H2 haplotype or H2/H2 genotype frequency in PiD 
cases when compared with control subjects [162]. To date, 
no specific genetic locus has been associated with AGD. 
However, a 40-kb deletion at 17p13.2 encompassing the 
cystinosin, lysosomal cystine transporter (CTNS) gene has 
recently been described suggesting that this may be a can-
didate gene for AGD [212]. No mutation has been reported 
in MAPT in PART, but haplotype analysis demonstrates 
a strong association with the MAPT H1 haplotype. Next-
generation re-sequencing of MAPT followed by associa-
tion analysis showed an association between PART and two 
polymorphisms in the MAPT 3′ untranslated region (UTR). 
These results suggest that haplotype-specific variation in 
the MAPT 3′ UTR underlies an Aβ-independent mechanism 
for neurodegeneration in PART [189]. There are discrep-
ant findings of an association of PART and APOE genotype 
and the potential overlap of PART with AD remains uncer-
tain [31].

To identify common genetic variation contributing to 
PSP, a GWAS found significant signals associated with PSP 
risk in syntaxin 6 (STX6), eukaryotic translation initia-
tion factor 2-α kinase 3 (EIF2AK3), and myelin-associated 
oligodendrocyte basic protein (MOBP) genes [89]. Two 
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independent variants in MAPT affect risk for PSP, one of 
which influences MAPT brain expression. The genes impli-
cate proteins for vesicle–membrane fusion at the Golgi–
endosomal interface, the endoplasmic reticulum unfolded 
protein response and, and a myelin structural component.

Hereditary FTLD-Tau: FTLD-Tau with a MAPT mutation

FTLD-Tau with MAPT mutations (Fig. 3), previously 
called FTDP-17, is now distinguished from chromo-
some 17-linked families who have a mutation in the GRN 
(Fig. 3). MAPT mutations, of which more than 40 have 
been identified as pathogenic, cause tau dysfunction by 
several mechanisms [63, 90]. First, intronic and some 
exonic mutations affect the alternative splicing of exon 10 
and consequently alter the relative proportions of 3R and 
4R tau which may disturb normal tau function and lead to 
increased cytoplasmic tau and inclusion formation. Mis-
sense mutations impair the ability of tau to bind MTs and 
to promote MT assembly. Finally, some mutations also 
promote the assembly of tau into pathological amyloid 
filaments.

Familial cases with MAPT mutations typically have 
atrophy of the frontal and temporal lobes and microscopi-
cally show neuronal loss, astrocytosis, microvacuolation, 
and swollen neurons. There is a spectrum of tau pathology 
associated with MAPT mutations, including intraneuronal 
neurofibrillary tangle-like inclusions (Fig. 2d), neuronal 
globose tangle-like inclusions, intraneuronal Pick body-like 
inclusions, astrocytic tangle-like inclusions, and oligoden-
droglial inclusions resembling coiled bodies and dystrophic 
neurites. Mutations in MAPT generate a heterogeneous 
biochemical phenotype as well: mutations may generate 
predominantly either 3R or 4R tau, or a combination of the 
two. Thus, an extraordinarily wide range of tau pathology 
has been observed in these familial cases and aside from 
tau inclusion pathology, there is no unifying or distinct 
neuropathological finding to diagnose these familial condi-
tions at autopsy [63]. Indeed, on occasion cases may appear 
pathologically consistent with sporadic tauopathies (i.e., 
PiD, CBD. PSP) and require genetic testing for diagnosis 
as disorders caused by MAPT mutations. Tau inclusions are 
similarly hyperphosphorylated in hereditary tauopathies 
as in sporadic disease (i.e., PiD, CBD, PSP). In addition, 
p.P301L and IVS10 + 16 mutation cases, which contain 
predominantly 4R tau isoforms, have robust reactivity for 
ack280, despite the absence of thioflavin-S-reactive amy-
loid tau inclusions [101].

Clinicopathological correlations

FTLD-Tau comprises approximately half of all cases with 
a bvFTD clinical syndrome [64, 88, 183] (Fig. 4) and this 

includes PiD and FTLD-Tau with a MAPT mutation, and 
less commonly CBD and PSP. Further, PiD most often pre-
sents clinically with bvFTD but also has been reported in 
association with PPA and CBS phenotypes [183]. In a large 
autopsy series of patients with clinical CBS, CBD com-
prised only 35 % of cases, with 13 % having PSP neuro-
pathology and 23 % with AD (in addition to the aforemen-
tioned ~15 % with FTLD-TDP) [133]. Conversely, CBD 
neuropathology can often present with cognitive syndromes 
in the absence of motor features of CBS [166]. Thus, CBS 
is a very heterogeneous clinical syndrome and recent clini-
cal criteria have been proposed to help identify clinical 
features that may identify underlying CBD neuropathol-
ogy [6]. In contrast, the clinical syndrome of PSP, and in 
particular the supranuclear vertical gaze palsy and pres-
ence of early postural instability, is highly associated with 
PSP neuropathology [135, 183]. As such, PSP patients are 
an attractive patient population for emerging tau-directed 
therapies; however, despite the specificity of these clini-
cal features, the criteria are not very sensitive and patients 
with PSP neuropathology may have other clinical manifes-
tations. Indeed, CBS and PSP patients may present with 
behavioral changes consistent with bvFTD or non-fluent 
motor speech difficulties consistent with naPPA, prior to, 
or after the development of the movement disorder. There-
fore, the presence of extrapyramidal symptoms suggestive 
of CBS/PSP in bvFTD or naPPA likely reflects an underly-
ing tauopathy in most cases [64]. Finally, the majority of 
naPPA patients are found to have underlying FTLD-Tau in 
most autopsy series [78, 88, 109, 120, 154, 183] but a sig-
nificant proportion may have underlying FTLD-TDP [78, 
120, 154, 197] or AD at autopsy [3, 78, 120, 154]. FTLD-
Tau with MAPT mutations is extremely heterogeneous and 
has been associated largely with bvFTD and PPA, but PSP 
and CBS clinical phenotypes have also been described [63].

The associations of PART and AGD with specific clini-
cal symptoms of dementia are less defined. AGD has a 
varied clinical presentation with episodic memory loss 
observed in most subjects, but behavioral abnormalities, 
personality changes and emotional and mood imbalance 
similar to bvFTD have also been described [60]. Finally, 
PART is usually a late-onset (>80 years) amnestic disorder 
[107] although some cases may have bvFTD clinical fea-
tures as well or be clinically silent [51].

Other forms of FTLD including FTLD‑FUS, FTLD‑U 
and dementia lacking distinctive histopathology 
(DLDH)

Following the discovery of mutations in TARDBP in FALS, 
the search for other RNA/DNA-binding proteins led to the 
discovery of mutations in FUS in other FALS kindreds 
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and that the ubiquitinated inclusion bodies in these cases 
contained FUS protein [123, 210]. Interestingly, the inclu-
sion bodies of another group of FTLD-U entities were also 
found to be characterized by inclusion bodies containing 
FUS protein, but in the absence of FUS mutations, these 
include: basophilic inclusion body disease (BIBD) [165], 
neuronal intermediate filament (IF) inclusion disease 
(NIFID) [172], and atypical FTLD-U [204]. Collectively 
FTLD-FUS accounts for <5 % of all FTLD (Fig. 3). Both 
FUS and TDP-43 are RNA-binding proteins and have simi-
lar structures and both are involved in transcriptional regu-
lation. Neuropathologically, there are similarities; TDP-43 
and FUS migrate from their normal nuclear location to 
the cytoplasm where they form relatively insoluble aggre-
gates. In vitro, several of the mutations appear to disrupt 
the import of TDP-43 or FUS into the nucleus which may 
result in its nuclear loss of function as well as a potential 
gain of toxic function as FUS aggregates in the cytoplasm. 
The family of three FET (FUS, EWS1, and TAF15) RNA-
binding proteins which are expressed in all tissues and 
almost all cell types are all components of the inclusions 
in these sporadic FUS diseases [170]. Clinically FTLD-
FUS with atypical FTLD-U often presents with bvFTD at 
a younger with atypical neuropsychological features [198, 
204] while rare reports of FTLD-FUS with NIFID and 
BIBD include a more varied age at onset and clinical phe-
notype [126, 131, 198].

Advances in the genetics and molecular pathology of 
FTLD have consigned most cases previously described as 
FTLD-U (which was formerly known as DLDH) or FTLD-
U plus ALS to FTLD-FUS or FTLD-TDP proteinopathy 
[140]. Today, very few cases in autopsy series have FTLD 
with inclusions containing proteins of the ubiquitin–pro-
teasome system (FTLD-UPS) that are tau TDP-43 or 
FUS-negative inclusions. At present, only one rare disease 
entity is assigned to this entity and that is FTLD-UPS with 
charged multivesicular body protein 2B (CHMP2B) gene 
mutation. Human CHMP2B is a component of the endo-
somal secretory complex, which becomes dysregulated by 
the gene defects. There have been very few neuropatho-
logic studies of this rare autosomal dominantly inherited 
disease.

FTLD not otherwise specified (FTLD-NOS) is an entity 
reserved for cases where the molecular pathology is not 
known, or that the case has not been investigated using 
anti-ubiquitin, tau, FUS, or TDP-43 antibodies [140]. His-
torically, this entity included dementia lacking distinctive 
histology DLDH cases [121]. Most of these cases have 
now been screened with molecular pathology-specific anti-
bodies and most cases now have been re-assigned to one 
of the FTLD entities described above. There remain, how-
ever, rare cases with the stereotypical features of FTLD, but 
without any inclusions having been detected. The nosology 

of these cases remains uncertain. A recent entity referred 
to as FTD “phenocopy” has emerged to describe minimally 
progressive FTD cases that may represent decompensated 
psychiatric disorders or other non-neurodegenerative dis-
ease etiologies but autopsy studies are lacking [118].

Ftld biomarker studies

Due to the complex clinicopathologic relationships in 
FTLD (Fig. 4), there is an urgent need for disease-specific 
biomarkers to improve ante-mortem diagnostics. Several 
modalities have been employed for FTLD biomarker devel-
opment including neuroimaging, biofluid, genetic and clin-
ical measures. A desirable biomarker will have sufficient 
sensitivity and specificity for FTLD-specific neuropathol-
ogy and optimally have low cost and minimal invasiveness.

As mentioned, differentiation of FTLD neuropathol-
ogy from atypical AD is a critical first step, as this would 
change current clinical management since approved AD 
therapies may worsen FTD [26]. Clinical features of early 
episodic memory loss and visuospatial impairment are sug-
gestive of underlying AD in patients with an FTD behavio-
ral disorder [179] or PPA [75]; however, clinical measures 
require extensive training and have ceiling effects which 
may limit use in clinical trials. Biofluid and neuroimag-
ing biomarkers would be advantageous to follow as sur-
rogate end points of potential disease-modifying therapies. 
Well-studied cerebrospinal fluid (CSF) biomarkers such as 
total-tau (t-tau) and amyloid beta (Aβ1–42) can accurately 
distinguish autopsy-confirmed AD from controls [192] and 
FTLD [19, 105, 203], with AD cases having higher t-tau: 
Aβ1–42 ratio. Indeed, CSF t-tau: Aβ1–42 ratio may provide 
a substantial improvement over clinical diagnosis in differ-
entiating atypical AD from FTD [105, 203]. Further, AD is 
predominantly a gray matter (GM) disease, compared with 
the significant white matter (WM) involvement in FTLD, 
and as such, diffusion tensor imaging (DTI) approaches 
appear to approach meaningful levels of diagnostic accu-
racy in differentiating AD from FTLD in autopsied cases 
[150–152]. There are still limitations in the widespread use 
of CSF biomarkers for AD in clinical practice based on 
intra- and inter-lab sources of variation at pre-analytical, 
analytical and post-analytical stages [116, 193, 211], but 
there are international cooperative efforts to standardize 
these assays [147]. In vivo imaging of amyloid beta [47] 
may also be a useful tool to identify atypical cases of AD 
with an FTD clinical phenotype; however, this is not spe-
cific and a significant proportion of FTLD cases may have 
low levels of comorbid AD neuropathology [203]. Thus, 
FTLD-specific biomarkers are crucial.

After exclusion of atypical AD cases, there is still con-
siderable heterogeneity of FTLD neuropathology and a 
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reasonable next step in diagnostic algorithm would be dif-
ferentiation of the two main classes of FTLD neuropathol-
ogy: FTLD-Tau from FTLD-TDP, as disease protein-tar-
geted therapies are already in development such as those 
targeting tau [37, 219]. Since FTLD-TDP does not have 
significant phospho-tau pathology there may be less phos-
phorylated tau (p-tau) released into the CSF compared to 
FTLD-Tau. Indeed, although both FTLD-Tau and FTLD-
TDP have lower levels of p-tau and t-tau compared to con-
trols, FTLD-TDP and ALS have lower levels of p-tau and 
p-tau:t-tau ratio compared with FTLD-Tau [79, 97]. CSF 
measurements of neurofilament light chains, a marker of 
axonal injury and neuronal loss, have found elevated levels 
in clinical FTD cohorts compared with controls and other 
neurodegenerative diseases [190, 195], with potential prog-
nostic utility suggested by association with FTD disease 
severity in one study [190]. Further, exploratory proteom-
ics-based approach has identified several other potential 
CSF biomarker candidates for FTLD-TDP [94] and others 
have developed assays to detect specific forms of tau [23, 
24, 137] which may be helpful in differentiating FTLD-Tau 
and subtypes within this group. Plasma [66] and CSF [200] 
measurements of TDP-43 pathology have yet to find speci-
ficity to differentiate TDP-43 proteinopathies from con-
trols; however, novel MAbs directed at various epitopes on 
TDP-43 [125] may prove useful for future biomarker stud-
ies. Novel biofluid analytes will require further validation 
in future studies with large autopsy-confirmed samples and 
require efforts for reducing inter-lab sources of variability 
before widespread clinical use.

Both FTLD-Tau and FTLD-TDP are associated with 
widespread ventromedial and dorsolateral frontal and 
anterior temporal GM loss compared with healthy control 
patients using magnetic resonance imaging (MRI). Direct 
comparison of neuropathological groups finds subtle differ-
ences in MRI cortical atrophy patterns that may be helpful 
in diagnosis (reviewed by [216]). Based on neuropathologi-
cal observations of higher relative WM burden in FTLD-
Tau compared to FTLD-TDP, comparisons of DTI imag-
ing in autopsy-confirmed cases finds diagnostic accuracy 
for FTLD-Tau and the WM degeneration was confirmed 
on neuropathological examination of subjects who were 
imaged ante-mortem [149]. Finally, the recent develop-
ment of tau-specific radioligands [46, 146] holds great 
promise for a non-invasive method to identify FTLD-Tau 
cases and studies to demonstrate this are currently ongo-
ing. Since the current clinical definitions of bvFTD, CBS 
and PPA variants do not correspond to a particular neu-
ropathology (Fig. 4) it is not possible to compare clinical 
diagnostic accuracy with FTLD-Tau or FTLD-TDP specific 
biomarkers. Instead, prospective studies using these emerg-
ing biomarkers will be critical in refining clinical criteria 
to develop endophenotypes through identification of key 

clinical features that predict FTLD-Tau or FTLD-TDP neu-
ropathology (e.g., bvFTD-Tau vs bvFTD-TDP).

Hereditary forms of FTLD provide a unique opportu-
nity for biomarker discovery as pathogenic mutations do 
reliably predict underlying neuropathology, in contrast to 
clinical syndrome. Detection of hereditary cases is aided 
using of a formal pedigree analysis to identify symptomatic 
individuals with a high likelihood of having an underly-
ing FTLD-pathogenic mutation [218]. Further, study of 
pre-symptomatic individuals within families that harbor 
pathogenic mutations may be useful to understand the lon-
gitudinal progression of biomarkers in early stages of dis-
ease [26]. Indeed, there are signs of network dysfunction in 
pre-symptomatic GRN [58] and C9orf72 mutation carriers 
[132]. As aforementioned, serum progranulin levels [196] 
and CSF DPR levels [202] may prove to be useful biomark-
ers for GRN and C9orf72 mutation cases, respectively. 
While these hereditary forms of FTLD may be attractive 
for clinical trial development for therapeutics specific for 
the mutation (e.g., progranulin-restorative therapy), it is 
unclear if inclusion of hereditary cases with sporadic dis-
ease would influence disease outcome measurements for 
more broad tau- or TDP-directed therapies. For example, 
C9orf72 disease contains additional protein inclusions 
[2, 10, 36, 161], additional clinical symptoms [148, 199] 
and possibly a worse prognosis compared with sporadic 
forms of the disease [39, 103]. Further, FTLD-Tau with 
MAPT mutations usually has a much earlier age at onset. 
Thus, disease-modifying therapeutic trials targeting tau or 
TDP would most likely benefit from a stratified analytic 
approach, similar to APOE genotype in AD clinical trials. 
Finally, SNPs may also provide a potential non-invasive 
method to help improve diagnostics in sporadic disease. 
Simultaneous evaluation of multiple SNPs from autopsy-
confirmed FTLD GWAS [89, 208] finds several SNPs 
over-expressed in FTLD-Tau or FTLD-TDP in a clinically 
mixed group of sporadic autopsy-confirmed cases [153]. In 
a study of sporadic bvFTD, the risk allele in FTLD-Tau-
associated SNP in MOBP was associated with a shorter 
disease duration and WM loss on DTI in the midbrain 
and long association fibers [104]. These studies highlight 
the potential usefulness of SNP genotyping as diagnostic 
and prognostic markers, although future studies in large 
populations of FTD patients with known pathology from 
diverse ethnic backgrounds are needed for confirmation of 
these associations. In addition, next-generation sequencing 
advancements will most likely reveal multiple new variants 
associated with forms of FTLD for future studies.

Most likely a combination of markers, rather than a 
single marker alone will have sufficient sensitivity and 
specificity to accurately diagnose the underlying molecu-
lar etiology of FTLD. Indeed, a combination of neuropsy-
chological measures with neuroimaging data improves 
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diagnostic accuracy in PPA [95]. Further, AD-associated 
biofluid analytes are highly correlated with regional GM 
density on MRI in FTLD/ALS; Low p-tau levels correlate 
with degeneration in motor area GM and WM in ALS [79] 
and low t-tau levels are associated with frontal and tem-
poral regional atrophy in FTLD patients [80]. Indeed, in a 
mixed AD and FTLD cohort, GM density was predictive 
of CSF t-tau:Aβ levels, and predicted CSF values based on 
GM density in ventromedial prefrontal (low t-tau:Aβ) and 
posterior neocortical regions (high t-tau:Aβ) were accurate 
in identifying underlying neuropathology, suggesting quan-
titative MRI could potentially serve as a surrogate for CSF 
biomarker measures [150].

Finally, FTLD-associated GWAS-derived SNPs predic-
tive of FTLD-Tau or FTLD-TDP were found to correlate 
with measures of GM and WM degeneration, suggesting 
that genetic variants may influence anatomic degeneration 
[153]. Thus, multimodal assessments provide converging 
evidence for biomarker validation. Future work integrat-
ing multiple modalities in large datasets of well-annotated 
autopsy-confirmed cases will be critical for defining clini-
cally useful diagnostic algorithms for FTLD. Due to the 
relative rarity of these disorders compared with AD, large 
multi-center efforts will be necessary. Recent international 
multi-center clinical trials of bvFTD [27] and PSP [28] 
have proven the feasibility of such efforts. Indeed, longi-
tudinal observational studies are currently underway in 
Europe (i.e., Genetic Frontotemporal Dementia Initiative, 
GENFI) and the US (i.e. Advancing Research and Treat-
ment for Frontotemporal Lobar Degeneration Consortium, 
ARTFL and Longitudinal Evaluation of Familial Fronto-
temporal Dementia Subjects, LEFFTDS).

Conclusions

The accumulation of different pathologically misfolded 
proteins in diverse inclusion bodies is a common feature 
of both FTLD-Tau and FTLD-TDP that comprise the spo-
radic and familial neurodegenerative disorders presenting 
with the clinical spectrum of FTLD/ALS. The discovery 
of mutations in MAPT, leading to abnormal filamentous 
inclusions, demonstrates that tau dysfunction is sufficient 
to produce neurodegenerative disease. Similarly, the dis-
covery of mutations in TARDBP in familial ALS indicate 
that TDP-43 dysfunction is sufficient to cause disease. The 
causal links between GRN, VCP, and C9orf72 mutations 
and TDP-43 proteinopathy are indirect and require fur-
ther research to be elucidated. The identification of addi-
tional gene mutations in FTLD or polymorphisms, such as 
TMEM106B, at distinct genetic loci that either cause or are 
risk factors for disease will provide additional insights into 
disease pathogenesis, as well as the development of novel 

strategies for treatment and prevention. Notably, the evi-
dence that tau pathology can be transmitted in animal mod-
els opens up new avenues to pursue mechanistic studies 
of disease progression as well as novel strategies to block 
the spread of tau pathology and it will be interesting to 
determine if TDP-43, FUS and other FET pathologies can 
be transmitted in laboratory animals to create compelling 
model systems to study the pathogenesis of these FTLD 
pathologies [83, 112].

Finally, since a current limitation in clinical practice 
is the inability to reliably diagnose specific FTLD neuro-
pathologies prior to autopsy, we expect that a multimodal 
approach utilizing, clinical, genetic, neuroimaging and 
biofluid FTLD-specific biomarkers will be central to accu-
rately diagnose FTLD-spectrum pathology ante-mortem 
[25, 26, 77, 106]. This approach will require discovery of 
new more informative biomarkers for FTLD, but this will 
certainly enhance power for clinical trials focused on slow-
ing or preventing transmission of tau, TDP-43 and other 
FTLD-associated pathologies and work toward the goal of 
defining clinical endophenotypes of FTD.
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